Linear Cocycles over Hyperbolic Systems and Criteria of Conformality
نویسندگان
چکیده
In this paper, we study Hölder-continuous linear cocycles over transitive Anosov diffeomorphisms. Under various conditions of relative pinching we establish properties including existence and continuity of measurable invariant subbundles and conformal structures. We use these results to obtain criteria for cocycles to be isometric or conformal in terms of their periodic data. We show that if the return maps at the periodic points are, in a sense, conformal or isometric then so is the cocycle itself with respect to a Hölder-continuous Riemannian metric.
منابع مشابه
Cohomology of Fiber Bunched Cocycles over Hyperbolic Systems
We consider Hölder continuous fiber bunched GL(d,R)-valued cocycles over an Anosov diffeomorphism. We show that two such cocycles are Hölder continuously cohomologous if they have equal periodic data, and prove a result for cocycles with conjugate periodic data. We obtain a corollary for cohomology between any constant cocycle and its small perturbation. The fiber bunching condition means that ...
متن کاملCocycles with One Exponent over Partially Hyperbolic Systems
We consider Hölder continuous linear cocycles over partially hyperbolic diffeomorphisms. For fiber bunched cocycles with one Lyapunov exponent we show continuity of measurable invariant conformal structures and sub-bundles. Further, we establish a continuous version of Zimmer’s Amenable Reduction Theorem. For cocycles over hyperbolic systems we also obtain polynomial growth estimates for the no...
متن کاملTopological Classiication of Linear Hyperbolic Cocycles
In this paper linear hyperbolic cocycles are classiied by the relation of topological conjugacy. Roughly speaking, two linear cocycles are conjugate if there exists a homeomorphism which maps their tra-jectories into each other. The problem of classiication of discrete-time deterministic hyperbolic dynamical systems was investigated by Rob-bin (1972). He proved that there exist 4d classes of d-...
متن کاملHolonomies and Cohomology for Cocycles over Partially Hyperbolic Diffeomorphisms
We consider group-valued cocycles over a partially hyperbolic diffeomorphism which is accessible volume-preserving and center bunched. We study cocycles with values in the group of invertible continuous linear operators on a Banach space. We describe properties of holonomies for fiber bunched cocycles and establish their Hölder regularity. We also study cohomology of cocycles and its connection...
متن کاملStructural Stability and Topological Classification of Continuous-time Linear Hyperbolic Cocycles
In this paper we study topological properties of continuous-time linear hyperbolic cocycles. Roughly speaking, two cocycles are called conjugate if there exists a random homeomorphism mapping their orbits into each other; a cocycle is called structurally stable if it is conjugate to every cocycle from a neighborhood of itself. We prove that any linear hy-perbolic cocycle is structurally stable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010